42 research outputs found

    Approximating Word Ranking and Negative Sampling for Word Embedding

    Get PDF
    CBOW (Continuous Bag-Of-Words) is one of the most commonly used techniques to generate word embeddings in various NLP tasks. However, it fails to reach the optimal performance due to uniform involvements of positive words and a simple sampling distribution of negative words. To resolve these issues, we propose OptRank to optimize word ranking and approximate negative sampling for bettering word embedding. Specifically, we first formalize word embedding as a ranking problem. Then, we weigh the positive words by their ranks such that highly ranked words have more importance, and adopt a dynamic sampling strategy to select informative negative words. In addition, an approximation method is designed to efficiently compute word ranks. Empirical experiments show that OptRank consistently outperforms its counterparts on a benchmark dataset with different sampling scales, especially when the sampled subset is small. The code and datasets can be obtained from https://github.com/ouououououou/OptRank

    A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation

    Get PDF
    Recommending a ranked list of interesting venues to users based on their preferences has become a key functionality in Location-Based Social Networks (LBSNs) such as Yelp and Gowalla. Bayesian Personalised Ranking (BPR) is a popular pairwise recommendation technique that is used to generate the ranked list of venues of interest to a user, by leveraging the user's implicit feedback such as their check-ins as instances of positive feedback, while randomly sampling other venues as negative instances. To alleviate the sparsity that affects the usefulness of recommendations by BPR for users with few check-ins, various approaches have been proposed in the literature to incorporate additional sources of information such as the social links between users, the textual content of comments, as well as the geographical location of the venues. However, such approaches can only readily leverage one source of additional information for negative sampling. Instead, we propose a novel Personalised Ranking Framework with Multiple sampling Criteria (PRFMC) that leverages both geographical influence and social correlation to enhance the effectiveness of BPR. In particular, we apply a multi-centre Gaussian model and a power-law distribution method, to capture geographical influence and social correlation when sampling negative venues, respectively. Finally, we conduct comprehensive experiments using three large-scale datasets from the Yelp, Gowalla and Brightkite LBSNs. The experimental results demonstrate the effectiveness of fusing both geographical influence and social correlation in our proposed PRFMC framework and its superiority in comparison to BPR-based and other similar ranking approaches. Indeed, our PRFMC approach attains a 37% improvement in MRR over a recently proposed approach that identifies negative venues only from social links

    Learning implicit recommenders from massive unobserved feedback

    Get PDF
    In this thesis we investigate implicit feedback techniques for real-world recommender systems. However, learning a recommender system from implicit feedback is very challenging, primarily due to the lack of negative feedback. While a common strategy is to treat the unobserved feedback (i.e., missing data) as a source of negative signal, the technical difficulties cannot be overlooked: (1) the ratio of positive to negative feedback in practice is highly imbalanced, and (2) learning through all unobserved feedback (which easily scales to billion level or higher) is computationally expensive. To effectively and efficiently learn recommender models from implicit feedback, two types of methods are presented, that is, negative sampling based stochastic gradient descent (NS-SGD) and whole sample based batch gradient descent (WS-BGD). Regarding the NS-SGD method, how to effectively sample informative negative examples to improve recommendation algorithms is investigated. More specifically, three learning models called Lambda Factorization Machines (lambdaFM), Boosting Factorization Machines (BoostFM) and Geographical Bayesian Personalized Ranking (GeoBPR) are described. While regarding the WS-BGD method, how to efficiently use all unobserved implicit feedback data rather than resorting to negative sampling is studied. A fast BGD learning algorithm is proposed, which can be applied to both basic collaborative filtering and content/context-aware recommendation settings. The last research work is on the session-based item recommendation, which is also an implicit feedback scenario. However, different from above four works based on shallow embedding models, we apply deep learning based sequence-to-sequence model to directly generate the probability distribution of next item. The proposed generative model can be applied to various sequential recommendation scenarios. To support the main arguments, extensive experiments are carried out based on real-world recommendation datasets. The proposed recommendation algorithms have achieved significant improvements in contrast with strong benchmark models. Moreover, these models can also serve as generic solutions and solid baselines for future implicit recommendation problems

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    VSE-ens: Visual-Semantic Embeddings with Efficient Negative Sampling

    Full text link
    Jointing visual-semantic embeddings (VSE) have become a research hotpot for the task of image annotation, which suffers from the issue of semantic gap, i.e., the gap between images' visual features (low-level) and labels' semantic features (high-level). This issue will be even more challenging if visual features cannot be retrieved from images, that is, when images are only denoted by numerical IDs as given in some real datasets. The typical way of existing VSE methods is to perform a uniform sampling method for negative examples that violate the ranking order against positive examples, which requires a time-consuming search in the whole label space. In this paper, we propose a fast adaptive negative sampler that can work well in the settings of no figure pixels available. Our sampling strategy is to choose the negative examples that are most likely to meet the requirements of violation according to the latent factors of images. In this way, our approach can linearly scale up to large datasets. The experiments demonstrate that our approach converges 5.02x faster than the state-of-the-art approaches on OpenImages, 2.5x on IAPR-TCI2 and 2.06x on NUS-WIDE datasets, as well as better ranking accuracy across datasets.Comment: Published by The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation

    Get PDF
    Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary context such as the time of the day reflects the user's current contextual preferences, whereas a transition context - such as a time interval from their last visited venue - indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time- and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches

    VSE-ens: Visual-Semantic Embeddings with Efficient Negative Sampling

    Get PDF
    Jointing visual-semantic embeddings (VSE) have become a research hotpot for the task of image annotation, which suffers from the issue of semantic gap, i.e., the gap between images' visual features (low-level) and labels' semantic features (high-level). This issue will be even more challenging if visual features cannot be retrieved from images, that is, when images are only denoted by numerical IDs as given in some real datasets. The typical way of existing VSE methods is to perform a uniform sampling method for negative examples that violate the ranking order against positive examples, which requires a time-consuming search in the whole label space. In this paper, we propose a fast adaptive negative sampler that can work well in the settings of no figure pixels available. Our sampling strategy is to choose the negative examples that are most likely to meet the requirements of violation according to the latent factors of images. In this way, our approach can linearly scale up to large datasets. The experiments demonstrate that our approach converges 5.02x faster than the state-of-the-art approaches on OpenImages, 2.5x on IAPR-TCI2 and 2.06x on NUS-WIDE datasets, as well as better ranking accuracy across datasets.Comment: Published by The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18
    corecore